首页>国内 > 正文

AI实战,用Python玩个自动驾驶!

2022-04-12 14:30:33来源:Python专栏

安装环境

gym是用于开发和比较强化学习算法的工具包,在python中安装gym库和其中子场景都较为简便。

安装gym:

pip install gym

安装自动驾驶模块,这里使用 Edouard Leurent 发布在 github 上的包 highway-env:

pip install --user git+https://github.com/eleurent/highway-env

其中包含6个场景:

高速公路——“highway-v0” 汇入——“merge-v0” 环岛——“roundabout-v0” 泊车——“parking-v0” 十字路口——“intersection-v0” 赛车道——“racetrack-v0”

详细文档可以参考这里:

​​https://highway-env.readthedocs.io/en/latest/​​

配置环境

安装好后即可在代码中进行实验(以高速公路场景为例):

import gymimport highway_env%matplotlib inlineenv = gym.make("highway-v0")env.reset()for _ in range(3):    action = env.action_type.actions_indexes["IDLE"]    obs, reward, done, info = env.step(action)    env.render()

运行后会在模拟器中生成如下场景:

env类有很多参数可以配置,具体可以参考原文档。

训练模型1、数据处理

(1)state

highway-env包中没有定义传感器,车辆所有的state (observations) 都从底层代码读取,节省了许多前期的工作量。根据文档介绍,state (ovservations) 有三种输出方式:Kinematics,Grayscale Image和Occupancy grid。

Kinematics

输出V*F的矩阵,V代表需要观测的车辆数量(包括ego vehicle本身),F代表需要统计的特征数量。例:

数据生成时会默认归一化,取值范围:[100, 100, 20, 20],也可以设置ego vehicle以外的车辆属性是地图的绝对坐标还是对ego vehicle的相对坐标。

在定义环境时需要对特征的参数进行设定:

config = \    {    "observation":           {        "type": "Kinematics",        #选取5辆车进行观察(包括ego vehicle)        "vehicles_count": 5,          #共7个特征        "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],          "features_range":              {            "x": [-100, 100],            "y": [-100, 100],            "vx": [-20, 20],            "vy": [-20, 20]            },        "absolute": False,        "order": "sorted"        },    "simulation_frequency": 8,  # [Hz]    "policy_frequency": 2,  # [Hz]    }

Grayscale Image

生成一张W*H的灰度图像,W代表图像宽度,H代表图像高度

Occupancy grid

生成一个WHF的三维矩阵,用W*H的表格表示ego vehicle周围的车辆情况,每个格子包含F个特征。

(2) action

highway-env包中的action分为连续和离散两种。连续型action可以直接定义throttle和steering angle的值,离散型包含5个meta actions:

ACTIONS_ALL = {        0: "LANE_LEFT",        1: "IDLE",        2: "LANE_RIGHT",        3: "FASTER",        4: "SLOWER"    }

(3) reward

highway-env包中除了泊车场景外都采用同一个reward function:

这个function只能在其源码中更改,在外层只能调整权重。

(泊车场景的reward function原文档里有)

2、搭建模型

DQN网络,我采用第一种state表示方式——Kinematics进行示范。由于state数据量较小(5辆车*7个特征),可以不考虑使用CNN,直接把二维数据的size[5,7]转成[1,35]即可,模型的输入就是35,输出是离散action数量,共5个。

import torchimport torch.nn as nnfrom torch.autograd import Variableimport torch.nn.functional as Fimport torch.optim as optimimport torchvision.transforms as Tfrom torch import FloatTensor, LongTensor, ByteTensorfrom collections import namedtupleimport random  Tensor = FloatTensorEPSILON = 0    # epsilon used for epsilon greedy approachGAMMA = 0.9TARGET_NETWORK_REPLACE_FREQ = 40       # How frequently target netowrk updatesMEMORY_CAPACITY = 100BATCH_SIZE = 80LR = 0.01         # learning rateclass DQNNet(nn.Module):    def __init__(self):        super(DQNNet,self).__init__()                          self.linear1 = nn.Linear(35,35)        self.linear2 = nn.Linear(35,5)                    def forward(self,s):        s=torch.FloatTensor(s)                s = s.view(s.size(0),1,35)                s = self.linear1(s)        s = self.linear2(s)        return s            class DQN(object):    def __init__(self):        self.net,self.target_net = DQNNet(),DQNNet()                self.learn_step_counter = 0              self.memory = []        self.position = 0          self.capacity = MEMORY_CAPACITY                self.optimizer = torch.optim.Adam(self.net.parameters(), lr=LR)        self.loss_func = nn.MSELoss()    def choose_action(self,s,e):        x=np.expand_dims(s, axis=0)        if np.random.uniform() < 1-e:              actions_value = self.net.forward(x)                        action = torch.max(actions_value,-1)[1].data.numpy()            action = action.max()                    else:              action = np.random.randint(0, 5)        return action    def push_memory(self, s, a, r, s_):        if len(self.memory) < self.capacity:            self.memory.append(None)        self.memory[self.position] = Transition(torch.unsqueeze(torch.FloatTensor(s), 0),torch.unsqueeze(torch.FloatTensor(s_), 0),\                                                torch.from_numpy(np.array([a])),torch.from_numpy(np.array([r],dtype="float32")))#        self.position = (self.position + 1) % self.capacity    def get_sample(self,batch_size):        sample = random.sample(self.memory,batch_size)        return sample    def learn(self):        if self.learn_step_counter % TARGET_NETWORK_REPLACE_FREQ == 0:            self.target_net.load_state_dict(self.net.state_dict())        self.learn_step_counter += 1        transitions = self.get_sample(BATCH_SIZE)        batch = Transition(*zip(*transitions))        b_s = Variable(torch.cat(batch.state))        b_s_ = Variable(torch.cat(batch.next_state))        b_a = Variable(torch.cat(batch.action))        b_r = Variable(torch.cat(batch.reward))            q_eval = self.net.forward(b_s).squeeze(1).gather(1,b_a.unsqueeze(1).to(torch.int64))          q_next = self.target_net.forward(b_s_).detach() #        q_target = b_r + GAMMA * q_next.squeeze(1).max(1)[0].view(BATCH_SIZE, 1).t()                    loss = self.loss_func(q_eval, q_target.t())                self.optimizer.zero_grad() # reset the gradient to zero                loss.backward()        self.optimizer.step() # execute back propagation for one step                return lossTransition = namedtuple("Transition",("state", "next_state","action", "reward"))
3、运行结果

各个部分都完成之后就可以组合在一起训练模型了,流程和用CARLA差不多,就不细说了。

初始化环境(DQN的类加进去就行了):

import gymimport highway_envfrom matplotlib import pyplot as pltimport numpy as npimport timeconfig = \    {    "observation":           {        "type": "Kinematics",        "vehicles_count": 5,        "features": ["presence", "x", "y", "vx", "vy", "cos_h", "sin_h"],        "features_range":              {            "x": [-100, 100],            "y": [-100, 100],            "vx": [-20, 20],            "vy": [-20, 20]            },        "absolute": False,        "order": "sorted"        },    "simulation_frequency": 8,  # [Hz]    "policy_frequency": 2,  # [Hz]    }env = gym.make("highway-v0")env.configure(config)

训练模型:

dqn=DQN()count=0reward=[]avg_reward=0all_reward=[]time_=[]all_time=[]collision_his=[]all_collision=[]while True:    done = False      start_time=time.time()    s = env.reset()    while not done:        e = np.exp(-count/300)  #随机选择action的概率,随着训练次数增多逐渐降低        a = dqn.choose_action(s,e)        s_, r, done, info = env.step(a)        env.render()        dqn.push_memory(s, a, r, s_)        if ((dqn.position !=0)&(dqn.position % 99==0)):            loss_=dqn.learn()            count+=1            print("trained times:",count)            if (count%40==0):                avg_reward=np.mean(reward)                avg_time=np.mean(time_)                collision_rate=np.mean(collision_his)                all_reward.append(avg_reward)                all_time.append(avg_time)                all_collision.append(collision_rate)                plt.plot(all_reward)                plt.show()                plt.plot(all_time)                plt.show()                plt.plot(all_collision)                plt.show()                reward=[]                time_=[]                collision_his=[]        s = s_        reward.append(r)        end_time=time.time()    episode_time=end_time-start_time    time_.append(episode_time)    is_collision=1 if info["crashed"]==True else 0    collision_his.append(is_collision)

我在代码中添加了一些画图的函数,在运行过程中就可以掌握一些关键的指标,每训练40次统计一次平均值。

平均碰撞发生率:

epoch平均时长(s):

平均reward:

可以看出平均碰撞发生率会随训练次数增多逐渐降低,每个epoch持续的时间会逐渐延长(如果发生碰撞epoch会立刻结束)

总结

相比于模拟器CARLA,highway-env环境包明显更加抽象化,用类似游戏的表示方式,使得算法可以在一个理想的虚拟环境中得到训练,而不用考虑数据获取方式、传感器精度、运算时长等现实问题。对于端到端的算法设计和测试非常友好,但从自动控制的角度来看,可以入手的方面较少,研究起来不太灵活。

关键词: 高速公路 相对坐标 可以看出 灰度图像 十字路口

相关新闻

Copyright 2015-2020   三好网  版权所有